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We investigate numerically the temperature and density dependence of the Stokes-Einstein ratio,
Dη/T, and of two commonly-used variants thereof, Dτ and Dτ /T, where D is a diffusivity, η the
shear viscosity, and τ a structural relaxation time. We consider a family of atomic binary mix-
tures with systematically-softened repulsive interactions, and the Lewis-Wahnström model of ortho-
terphenyl (OTP). The three quantities grow significantly as the temperature decreases in the super-
cooled regime, a well-known phenomenon. At higher temperatures, Dτ exhibits negative violations
of Stokes-Einstein behavior, i.e., decrease upon cooling, for the atomic systems, though not for OTP.
We consider two choices for the relaxation time, one based on the decay of the self-intermediate
scattering function, and the other on the integral of the stress autocorrelation function. The instanta-
neous shear modulus exhibits appreciable temperature dependence for the two classes of systems
investigated here. Our results suggest that commonly-invoked assumptions, such as τ ∼ η and
τ ∼ η/T, should be critically evaluated across a wide spectrum of systems and thermodynamic con-
ditions. We find the Stokes-Einstein ratio, Dη/T, to be constant across a broad range of temperatures
and densities for the two classes of systems investigated here. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4775741]

I. INTRODUCTION

The well-known Stokes-Einstein equation, which com-
bines Einstein’s analysis of the diffusion of small suspended
particles,1 and Stokes’ formula for the drag on a rigid
spherical particle moving through a viscous fluid,2 is given
by

D = kBT

Cηa
. (1)

Here, D is the diffusion coefficient of the macroscopic spheres
of radius a, η is the shear viscosity of the surrounding fluid at
temperature T, and kB is Boltzmann’s constant. C is a constant
that depends on the boundary conditions at the particle-fluid
interface, and ranges from 6π for no-slip to 4π for slip bound-
ary conditions.3

Equation (1) has been successfully applied to a wide
variety of situations, including enhancement in the thermal
conductivity of nano-particle suspensions,4 diffusion of pro-
teins or other macromolecules in solution,5–8 transport in
cells,9 and magma flow beneath the earth’s crust.10, 11 In
these cases, a is taken to be an effective hydrodynamic
radius.12 Furthermore, although Eq. (1) was derived for a
sphere of supermolecular dimensions suspended in a contin-
uum, a molecular-level version of the Stokes-Einstein equa-
tion, where D now represents the self-diffusion coefficient of a
uniform fluid, has been found experimentally to be valid over
a wide range of temperatures for many liquids.13–20 Thus, for
a given liquid, we can define a quantity, Dη/T, whose con-
stancy, or lack thereof, over a range of thermodynamic con-

ditions, serves as a measure of the validity of the Stokes-
Einstein equation at the molecular level. One then says that
the Stokes-Einstein equation is valid when

Dη

T
= constant (2)

and any deviations away from Eq. (2) would indicate a
Stokes-Einstein violation.

A well-known condition where Stokes-Einstein violation
occurs is when a liquid undergoes deep supercooling.18–23 As
the temperature is decreased into the supercooled regime, the
rate at which the viscosity increases can become orders of
magnitude larger than that at which the self-diffusion coeffi-
cient decreases, and Dη/T then deviates strongly from Eq. (2).
Interestingly, the rotational analog of Eq. (1) (known as the
Stokes-Einstein-Debye equation24), Dr = kBT/C′ηa3, where
Dr is the rotational diffusion coefficient and C′ is a numer-
ical constant, can remain valid even when Eq. (2) begins to
break down.25–27 This decoupling of translational and rota-
tional diffusion has been explained by invoking dynamic het-
erogeneity, which refers to the presence of transient spatially
separated regions with vastly different relaxation times.24

The microscopic origin of this supercooled Stokes-Einstein
violation, and of the decoupling between translational
and rotational motion, is a topic of considerable research
interest.28–37

Molecular dynamics simulation, which has the advan-
tage of being able to track each atom individually, of-
fers a useful and insightful perspective for the microscopic
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investigation of the mechanisms underlying the Stokes-
Einstein violation. Simulations calculating the Stokes-
Einstein parameter Dη/T for soft-sphere systems have shown
good qualitative agreement with experiments;38, 39 Eq. (2) is
obeyed at moderately high temperatures, but deviations oc-
cur as the temperature is progressively decreased. However,
because the shear viscosity, η, is a computationally inten-
sive quantity to calculate in simulations,38 it has become in-
creasingly common in computational studies to reinterpret the
physical meaning of the Stokes-Einstein relation simply as
the product of a diffusion coefficient and a relaxation time.
Indeed, many studies of the Stokes-Einstein violation use a
structural relaxation time, τ , as a substitute for the viscosity,
η.25, 40–46 The functional form of the relation between τ and
η varies among different studies; the two most often used are
τ ∝ η44–46 and τ ∝ η/T.25, 40–43

The proportionality between η and τ is based on the
expression η = G∞τ , where G∞ is the instantaneous shear
modulus, and τ is now a stress relaxation time. It is com-
monly assumed in the simulation literature that the structural
and stress relaxation times are interchangeable; the validity
of this assumption has not been systematically tested. Al-
though G∞ does have a slight temperature dependence,47 in
the supercooled regime both η and τ can increase by many
orders of magnitude as a result of modest decreases in tem-
perature. Thus G∞ is treated as a constant, leading to the ap-
proximate relation τ ∝ η, which in turn gives D ∝ T/τ . The
second relation, τ ∝ η/T results from the Gaussian solution
to the diffusion equation,48 given by Fs(k, t) = exp(−k2Dt)
≡ exp(−t/τ ), where Fs(k, t) is the self-intermediate scat-
tering function and k is the associated wave vector. It fol-
lows then that D∝1/τ , which implies τ ∝ η/T. Yamamoto and
Onuki have shown empirical evidence in support of this sec-
ond relationship.43 It is important to point out that although
the relations τ ∝ η and τ ∝ η/T differ by a factor of 1/T, both
appear to be reasonable approximations when studying the
Stokes-Einstein violation in the deeply supercooled regime,
when small temperature changes result in order of magnitude
changes in both τ and η.

Although it has become standard in numerical studies to
calculate Dτ /T or Dτ as substitutes for Dη/T when investi-
gating the Stokes-Einstein violation, a systematic study of
the various forms of the Stokes-Einstein ratio has not been
carried out over broad ranges of thermodynamic conditions.
The goal of this work is to investigate numerically the tem-
perature and density dependence of the three Stokes-Einstein
ratios, Dη/T, Dτ /T, and Dτ , for selected atomic and molec-
ular model systems. We seek to highlight some non-trivial
distinctions between the true Stokes-Einstein equation, where
viscosity is used, and the “proxy” Stokes-Einstein equations,
where a relaxation time is used instead. We also investigate
the validity of the assumption of interchangeability between
structural and stress relaxation times. In Sec. II we define
the models and provide details of the computational meth-
ods utilized in our investigation. The qualitative differences
that arise between the three variants of the Stokes-Einstein re-
lation are presented and analyzed in Sec. III. The principal
conclusions and suggestions for further study are presented in
Sec. IV.

II. METHODS

A. Model atomic system

We seek to investigate the Stokes-Einstein relation in
both model atomic and molecular systems. For the model
atomic system, we choose a family of systematically softened
(n, 6) pair potentials49 with the following functional form:

φ(r) = 4ε

[
λ

(σ

r

)n

− α
(σ

r

)6
]

, (3)

where

λ = 3

2

(
2n/6

n − 6

)
α = n

2(n − 6)
. (4)

The parameters λ and α are chosen such that the well depth
and radial location of the minimum of the generalized (n, 6)
potentials coincide with the minimum of the standard (12, 6)
Lennard-Jones potential. A detailed discussion of the thermo-
dynamic and dynamic properties of binary mixture systems
interacting via this family of potentials is given in Ref. 49. In
this study, we will use a representative sample of potentials
defined by Eq. (3), with n = 7, 9, and 12. For each interaction
potential, we apply the well-known Kob and Andersen binary
glass-forming mixture parameterization,50 namely, a mixture
of 80%A particles and 20%B particles, with parameters εAA

= 1.0, εBB = 0.5, εAB = 1.5, σ AA = 1.0, σ BB = 0.88, and
σ AB = 0.8. Both types of particles have the same mass, m. For
these atomic systems, all quantities are expressed in reduced
units: length in units of σ AA, temperature in units of εAA/kB,
and time in units of σ AA(m/εAA)1/2. In order to ensure continu-
ity of the potential and its first derivative at a cutoff distance
rc, we apply a shifted force (sf) correction to the potentials:

φsf (r) =
{
φ(r) − φ(rc) − (r − rc)φ′(rc) r ≤ rc

0 r > rc
. (5)

To minimize the effects of the shift on the shape of the various
potentials, a rather large cutoff of rc = 3.5 is chosen.

B. Model molecular system

For our molecular system, we choose the Lewis
and Wahnström model for ortho-terphenyl51 (1,2-
diphenylbenzene, OTP). In this model each phenyl ring
is represented by a Lennard-Jones site (ε = 5.276 kJ/mol, σ

= 4.83 Å), and the three sites constitute a rigid isosceles tri-
angle, with a vertex angle of 75◦ and a bond length of 4.83 Å
for the two equal sides. For simplicity, each site is assigned
the same mass of m = 78 g/mol. Although this is a somewhat
simplistic model for OTP, it allows us to observe how the
results from the atomic systems change when rotational
degrees of freedom are added. The rigid bond constraints
are maintained by the SHAKE algorithm, and for the OTP
simulations, all quantities are expressed in real units.

C. Viscosity and structural relaxation time

In molecular dynamics simulations, the shear viscos-
ity can be calculated by a Green-Kubo time-correlation
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relation:48

η = V

kBT

∫ ∞

0
dt〈Pxy(0)Pxy(t)〉, (6)

where Pxy is an off-diagonal element of the stress tensor, given
by

Pxy = 1

V

⎡
⎣∑

i

mivixviy +
∑

i

∑
j>i

(rix − rjx)Fijy

⎤
⎦ , (7)

where vix and viy are, respectively, the x and y components of
the velocity vector for atom i, and Fijy is the y component of
the force on atom i due to atom j. We use the “atomic” form
of the virial to calculate the pressure tensor,52, 53 i.e., the sums
are over each individual “atom” (force center) in the system,
and the double summation virial term includes contributions
from intra-molecular constraint forces, should any exist.

By exploiting the tensorial properties of the viscosity
constant, Daivis and Evans54 have shown that it is possible
to incorporate all elements of the pressure tensor into the cal-
culation of viscosity to improve statistics. The Green-Kubo
relation then becomes55

η = V

10kBT

∫ ∞

0
dt

∑
αβ

〈Pαβ(0)Pαβ(t)〉, (8)

where αβ = xx, yy, zz, xy, xz, yx, yz, zx, zy,

Pαβ = (παβ + πβα)/2 − δαβ

(∑
γ

πγγ

)
/3 (9)

and

παβ = 1

V

⎡
⎣∑

i

miviαviβ +
∑

i

∑
j>i

(riα − rjα)Fijβ

⎤
⎦ . (10)

The 1/10 prefix in Eq. (8) follows from the fact that the
stress tensor is symmetric and consists of five independent
components:56 Pxy, Pyz, Pxz, Pxx − Pyy, Pyy − Pzz.

We define a characteristic structural relaxation time
by using the self-intermediate scattering function Fs(k, t)
= 〈exp[ik · r(t)]〉, where k is a chosen wave vector and
r(t) is the center of mass displacement experienced by an

atom or molecule in time t. In each of the systems, the magni-
tude of the wave vector k is chosen to correspond to the first
peak of the molecular center-of-mass static structure factor.
The relaxation time τ is then defined by Fs(k, τ ) = 1/e.

III. RESULTS AND DISCUSSION

A. The Stokes-Einstein relations for a softened
atomic system

We compute the three forms of the Stokes-Einstein ratio:
Dη/T, Dτ /T, Dτ , for our family of softened potentials for den-
sities of ρ = 1.2, 1.25, and 1.3. Here, D corresponds to the dif-
fusion coefficient of the A particles for the various potentials,
and the wave number k used to calculate the self-intermediate
scattering function corresponds to the first peak of the struc-
ture factor for the A-A interactions, SAA(k). While there has
been experimental evidence that the Stokes-Einstein relation
can break down for one component while holding for others in
glass-forming alloys,57 we note that for our system the calcu-
lations based on either the A or B components are qualitatively
similar, and the results we report here are calculated using the
dynamic properties of the A particles.

In each case, we use a high temperature reference point
at T = 1.2, which is well above the landscape onset tem-
perature, below which mechanically stable packings sampled
upon energy minimization begin to depend sensitively on the
system’s temperature prior to minimization.58 The condition
T = 1.2 thus corresponds to a state in which the system can
freely sample all portions of energy landscape. Along each
isochore we compute the ratio χ (T)/χ (T = 1.2), where χ

= Dη/T, Dτ , or Dτ /T. Any deviation away from the hori-
zontal line of height 1 indicates a violation of the particular
Stokes-Einstein relation under investigation.

In Figure 1, we plot the temperature dependence of the
three ratios at a fixed density of ρ = 1.25 for n = 7, 9,
and 12. Although all three ratios show a Stokes-Einstein vi-
olation at low enough temperatures, their behavior at higher
temperatures exhibits pronounced differences. In particular,
the “true” Stokes-Einstein relation, D∝T/η, is in fact valid
for a wide range of temperatures, regardless of n. The ra-
tio Dτ /T shows large deviations from unity across the entire

FIG. 1. The Stokes-Einstein relations as a function of inverse temperature for a system interacting via softened potentials of n = 7 (left), 9 (center), and 12
(right). The Stokes-Einstein (SE) ratio is defined and color-coded as follows: Dη/T (black), Dτ (red), and Dτ /T (green), all normalized to their respective values
at T = 1.2. Note the wide range in temperature where the Stokes-Einstein relation holds when viscosity is used to calculate the SE ratio.
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FIG. 2. The three Stokes-Einstein relations plotted as a function of inverse temperature for a system interacting via a softened potentials of n = 7 for a density
of ρ = 1.2 (black), 1.25 (red), and 1.3 (green). The Stokes-Einstein (SE) ratio is defined as Dη/T (left), Dτ (center), and Dτ /T (right), and all normalized to
their respective values at T = 1.2. A horizontal line at 1 would indicate that the Stokes-Einstein relation is observed.

temperature range investigated, and hence exhibits qual-
itatively different behavior. The product Dτ approaches
the Stokes-Einstein behavior as repulsions become steeper
(n = 12). Note, however, that Dτ actually exhibits a nega-
tive violation at high temperatures, an effect especially pro-
nounced when the softness of the interaction potential is in-
creased. Here, we use the terminology “negative violation” to
denote the decrease of a Stokes-Einstein ratio below the high
temperature limit, corresponding to an increase of the effec-
tive hydrodynamic radius upon cooling.

For the case of n = 7, we also investigate how the
three Stokes-Einstein relations change as the density of the
system is varied (Figure 2). In all three cases, the large
(positive) violation due to supercooling occurs at a higher
temperature when the density is increased. This is a di-
rect consequence of the increase in the landscape onset
temperature49 as the density is increased, effectively rais-
ing the temperature of the supercooled regime. However, the
striking feature here is that the original Stokes-Einstein ra-
tio that uses viscosity is indeed constant over a broad range
of temperatures. Note again the negative Stokes-Einstein vi-
olation for the quantity Dτ , an effect that disappears grad-
ually upon compression. Although Dτ and Dτ /T show the
expected violation of Stokes-Einstein behavior at low tem-
peratures, neither shows a range of temperatures where the
quantity of interest remains constant, in marked contrast to
Dη/T.

B. The Stokes-Einstein relations for OTP

In Figure 3, we plot the three Stokes-Einstein variants for
the Lewis and Wahnström model of OTP. At liquid tempera-
tures, the Stokes-Einstein relation is again valid when Dη/T
is used for the calculation. However, in contrast to the atomic
systems, none of the three ratios show a “negative violation”
at higher temperatures. In fact, the results of Figure 3 sug-
gest that for this particular system, the product Dτ is actu-
ally a quite good substitute for the original Stokes-Einstein
ratio of Dη/T. This suggests that the validity of using a relax-
ation time instead of viscosity when studying Stokes-Einstein
behavior depends on the specifics of the system being inves-

tigated; a substitution that works well for one system might
not work well for another. As was the case for the family of
systematically-softened atomic systems, the ratio Dτ /T, based
on the approximation τ ∼ η, deviates very substantially from

FIG. 3. The three Stokes-Einstein relations plotted as a function of inverse
temperature for a system of Lewis and Wahnström OTP molecules at a den-
sity of ρ = 1.0746 g/cm3 (top) and 1.0578 g/cm3 (bottom). The SE ratio is
defined and color-coded as Dη/T (black), Dτ (red), and Dτ /T (green), all nor-
malized to their respective values at T = 400 K. Note again the wide range in
temperatures where the Stokes-Einstein relation holds when viscosity is used
for the calculation.
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FIG. 4. The ratio of the structural and stress relaxation times, τ /τGK, as a
function of temperature for the softened potential systems (top, ρ = 1.25)
and OTP (bottom, ρ = 1.0746 g/cm3 and 1.0578 g/cm3).

“Stokes-Einstein”-like behavior, Dτ /T = constant, across the
range of conditions investigated in this work for OTP.

C. The instantaneous shear modulus and stress
relaxation time

For our atomic systems, neither of the substitutions τ ∼ η

or τ ∼ η/T work very well, and in this section we seek to fur-
ther clarify the relation between the shear viscosity and relax-

ation times. We begin by rewriting the Green-Kubo relation
for viscosity (Eq. (8)) as follows:59

η = V
∑

αβ

〈
Pαβ(0)Pαβ(0)

〉
10kBT

∫ ∞

0
dt

∑
αβ

〈
Pαβ(0)Pαβ(t)

〉
∑

αβ

〈
Pαβ (0)Pαβ(0)

〉 .
(11)

The shear viscosity is commonly written as a product of an
instantaneous shear modulus, G∞, and a characteristic stress
relaxation time, τ :

η = G∞τ. (12)

G∞ is often approximated to be constant in temperature at
constant density, in particular when studying Stokes-Einstein
violation, because when a liquid undergoes supercooling,
changes on the right-hand side of Eq. (12) are dominated by
the order of magnitude increases in τ . However, G∞ does in
fact have a slight temperature dependence,47 and we seek to
investigate how this temperature dependence affects the quali-
tative differences observed at liquid temperatures between the
Stokes-Einstein relations using η and those using τ .

Comparing Eq. (11) and Eq. (12), we can define G∞(T)
and a corresponding Green-Kubo stress relaxation time
τGK:59

G∞(T ) = V
∑

αβ

〈
Pαβ(0)Pαβ(0)

〉
10kBT

, (13)

τGK =
∫ ∞

0
dt

∑
αβ

〈
Pαβ(0)Pαβ(t)

〉
∑

αβ

〈
Pαβ(0)Pαβ(0)

〉 . (14)

Here, we have defined a new relaxation time, τGK, which
we can now use to calculate Stokes-Einstein ratios DτGK and
DτGK/T. Note that τGK is a stress relaxation time. Figure 4
compares τGK with τ , the structural relaxation time derived
from the self-intermediate scattering function. It can be seen
that the temperature dependence of the ratio of relaxation
times is non-trivial, with τ /τGK increasing markedly upon
cooling. For the binary atomic mixtures, the ratio τ /τGK ap-
proaches a horizontal asymptote at high temperatures. This
suggests a coupling of the structural and stress relaxation
times at high temperatures, especially for the softer mix-
tures, and a progressive breakdown of this coupling as the

FIG. 5. The Stokes-Einstein relations as a function of inverse temperature for a system interacting via softened potentials of n = 7 (left), 9 (center), and 12
(right). The SE ratio is defined and color-coded as follows: Dη/T (black), DτGK (red), and DτGK/T (green), all normalized to their respective values at T = 1.2.
Here, the characteristic relaxation time τGK is derived from the Green-Kubo expression for viscosity and defined by Eq. (14). These curves behave qualitatively
similarly to those of Figure 1, where a characteristic relaxation time derived from the self-intermediate scattering function was used in the calculation.
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FIG. 6. The temperature dependence of the instantaneous shear modulus,
G∞(T), as defined by Eq. (13), for a system density of ρ = 1.25. The
three data sets in each graph correspond to softened potential interactions of
n = 7 (black), 9 (red), and 12 (green). For the top graph, the fit lines are
of the functional form aTb, resulting in a fitting parameter of a = 34.311,
48.070, 72.271 and b = 0.210, 0.231, 0.275, respectively, for n = 7, 9, 12.
For the bottom graph, the fit lines are of the functional form cT(T + d). The
regressed values of c and d are 9.744, 13.611, 21.952 and 2.518, 2.520, 2.278
for n = 7, 9, 12, respectively.

temperature is decreased.60 Figure 5 shows the resulting
Stokes-Einstein ratios based on τGK for the binary atomic sys-
tems. We can see that the behavior of these curves, particu-
larly for the softer mixtures, is qualitatively similar to those
in Figure 1.

Figure 6 shows the temperature dependence of both G∞
(in units of εAA/σ 3

AA) and G∞ · kBT, also for the binary atomic
systems. If we substitute the functional forms for the best fit
lines into Eq. (12), the relation between η and τGK can then be
modeled as either τGK∝ η/(T + const.) or τGK∝ η/Tb, where
0.2 < b < 0.3. We note that these models are intermediate be-
tween the commonly used proxy relations, τ ∝ η and τ ∝ η/T.
Indeed, as has already been discussed in connection with Fig-
ure 5, τ ∝ η overestimates the viscosity contribution to the
Stokes-Einstein relation, while τ ∝ η/T underestimates it.

Figures 7 and 8 show the results of the same analysis
when applied to the Lewis and Wahnström OTP systems. Sim-
ilar to the softened potential systems, G∞ increases with in-
creasing temperature. However, DτGK now exhibits a negative
violation of Stokes-Einstein behavior at higher temperatures.

FIG. 7. The Stokes-Einstein relations as a function of inverse tempera-
ture for a system of Lewis and Wahnström OTP molecules at a density of
ρ = 1.0746 g/cm3 (top) and 1.0578 g/cm3 (bottom). The SE ratio is defined
and color-coded as follows: Dη/T (black), DτGK (red), and DτGK/T (green),
all normalized to their respective values at T = 400 K. The characteristic re-
laxation time used here is τGK, derived from the Green-Kubo expression for
viscosity and defined by Eq. (14).

Collectively, these results show that the temperature depen-
dence of G∞ is non-trivial. Furthermore, when using relax-
ation time to investigate Stokes-Einstein validity over a broad
range of temperatures, using a different relaxation time (e.g.,

FIG. 8. The temperature dependence of the instantaneous shear modulus,
G∞(T), for a system of Lewis and Wahnström OTP molecules at a density of
ρ = 1.0746 g/cm3 and 1.0578 g/cm3. The lines are guides to the eye.
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structural or stress relaxation times) can result in a qualita-
tively different behavior. The validity of using a relaxation
time as a substitute for viscosity is dependent on both the par-
ticular definition of the relaxation time used, and the specifics
of the system under study.

IV. CONCLUSIONS

In this work, we have examined three variants of the
Stokes-Einstein ratio, namely Dη/T, Dτ , and Dτ /T, for model
atomic and molecular systems, over a broad range of temper-
atures and densities.

For the family of atomic binary systems investigated
here, with τ a structural relaxation time, the ratio Dτ /T,
based on the approximation τ ∼ η, increases upon cooling
much faster than the true Stokes-Einstein ratio Dη/T. The
product Dτ , based on the approximation τ ∼ η/T, exhibits
negative Stokes-Einstein violation at moderate temperatures,
approaching the true Stokes-Einstein ratio as the repulsive
component of the potential becomes progressively steeper.
The increase upon cooling exhibited by the three Stokes-
Einstein variants occurs at progressively higher temperatures
as the fluids are compressed. As can be seen from Figures 1
and 2, the Stokes-Einstein ratio Dη/T is constant, to a very
good approximation, over a broad range of thermodynamic
conditions.

The molecular system we studied, the Lewis-Wahnström
model of OTP, exhibits similar behavior, with one important
difference: the product Dτ is a reasonably accurate proxy for
the Stokes-Einstein ratio across the conditions investigated
here, and does not show negative violation of Stokes-Einstein
behavior. This is consistent with the trend observed in the
atomic systems, where the approximation τ ∼ η/T gets bet-
ter as the close range repulsion becomes steeper, since this
OTP model consists of three Lennard-Jones sites connected
by rigid bonds. For this system, too, Dη/T = constant is satis-
fied over an appreciable range of thermodynamic conditions:
300 ≤ T ≤ 400 K at 1.0746 g/cm3 and 280 ≤ T ≤ 400 K at
1.0578 g/cm3.

Different choices of relaxation times can affect the be-
havior of the Stokes-Einstein variants in non-trivial ways. In
this work we considered two relaxation times. One, denoted
simply by τ in this paper, is a structural relaxation time ob-
tained from the decay of the self-intermediate scattering func-
tion; the other, τGK, is a stress relaxation time obtained from
the Green-Kubo stress autocorrelation integral. While both re-
laxation times lead to similar behavior for the atomic binary
mixtures, especially for the softer potentials, for the OTP sys-
tem τGK leads to negative Stokes-Einstein violations in DτGK,
in contrast to Dτ which does not show negative violations.
Furthermore, the relationship between these two relaxation
times displays a non-trivial temperature dependence, espe-
cially at low temperatures.

The often-invoked simple proportionality between vis-
cosity and relaxation time is predicated on the assumed con-
stancy of the instantaneous shear modulus, G∞. Our numeri-
cal study of this quantity based on the Green-Kubo formalism
reveals an appreciable temperature dependence for the two

classes of systems investigated here, and G∞ increases with
temperature for both the atomic binary mixtures and OTP.

In this study, we have explored the effects of temperature
changes under constant density conditions. Most experiments,
on the other hand, are performed under isobaric conditions. It
would be interesting to investigate numerically the extent to
which the main observations reported here remain valid un-
der the more experimentally-relevant isobaric conditions. Re-
cent experiments suggest that in some glass-forming alloys
the product Dη is constant while Stokes-Einstein violation
occurs;61 it would be interesting to explore computationally
the extent to which this scaling applies more broadly to other
systems.

The present calculations suggest that commonly-invoked
assumptions, such as τ ∼ η and τ ∼ η/T, deserve critical
scrutiny when used to construct Stokes-Einstein variants. The
behavior of Dη/T, Dτ , and Dτ /T needs to be investigated for
a wider range of systems than the two considered here, and
across as broad a range of temperatures and densities as pos-
sible. It is also of interest to explore numerically the behavior
of different relaxation times, only two of which have been
considered here. It is hoped that such systematic numerical
investigation will lead to a deeper understanding of relaxation
processes in liquids at both supercooled and ambient condi-
tions. Our approach in this work has been phenomenological.
Numerical studies of the microscopic mechanisms underlying
the rich behavior presented here constitute a natural direction
for future studies.

We wish to stress in closing the remarkably broad range
of conditions across which the Stokes-Einstein equation,
meant to apply to supermolecular objects suspended in a fluid
continuum, is also valid at the molecular level.
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